
INTRODUCTION

Point in Time (PIT) tables in the
business vault will greatly reduce
the amount of compute time needed
in the raw and business data
vaults when it’s necessary to find
the correct set of satellite records
for a particular point in time. By
implementing PIT tables, points in
time are set in advance, eliminating
the need for reporting users to find the
most appropriately matching satellite
record per business key per requested
point in time. The PIT tables anticipate
and figure out this information ahead
of time, saving valuable manpower,
time, and budget. In this whitepaper,
you will learn about the journey of PIT
tables, how to create them, and their
importance as part of your data vault
implementation.

06
The Performance Reporting Problem

07
Using PIT Tables to Solve the Performance Problem

08
What Does a PIT Look Like?

10
Sample Code to Build a PIT Table

12
Standard DV 2.0 SQL to Access Data in the PIT Table

13
Optimizing the Data Storage Footprint of the PIT
without Sacrificing Performance

17
Conditions When SAT Load Date May Not Be the
Best Point-In-Time Field Choice

18
Summary of the Value of PITs

CONTENTS

Data Vault Point in Time (PIT) Tables
in DV 2.0 Standard: Importance,
Definitions, and Functionality

W H I T E PA P E R | DATA VAU LT PO I N T

Satellites are the objects in a raw data vault where all
changes to data are tracked over time. It is exactly these
changes to a satellite’s attributes that drive the need for
point-in-time (PIT) objects.

Assume we have a hub called Sample_h and it has three
satellites: Sample_SlowChg_sh, Sample_MedChg_sh, and
Sample_FastChg_sh

We name the satellites starting with the base hub name,
then a rolename the satellite is performing, followed by sh
so we know it is a satellite to a hub.

BACKGROUND

Raw data vaults consist of three object types: hubs,
links, and satellites.

 – HUB: Holds business keys in your enterprise. Each
different kind of business key (clients, accounts, orders,
etc.) has its own hub object.

 – LINK: Holds all the relationships between the various
hubs. One link may show how clients associate with
accounts, a different link may show how clients associate
to orders, and so on.

 – SATELLITE: Holds all the attributes that describe the
business key in a hub, or attributes that describe the
relationship in a link. They are either hub satellites or
link satellites. All satellites behave the same way, but a
particular satellite instance cannot associate with a hub
and link (or multiples of them) at the same time. The DV
2.0 standard is that a satellite object associates with just
one hub or link object.

However, each hub or link object can associate with zero
to infinity different satellite objects. It’s a one-to-many
relationship, not a many-to-many relationship between
hubs or link and satellites. Multiple satellite objects can be
associated with a particular hub or link for a multitude of
reasons. While this article doesn’t detail all those reasons,
you can visit https://danlinstedt.com/ for more information
on how and why.

One example reason for a hub or link to have multiple
satellites is that the attributes in the satellites may have
different frequencies of changes. If there are ten attributes
for a hub and seven of them change infrequently, those
seven attributes may be in one satellite. You would set the
other three attributes up in a different satellite because their
values change frequently. Continually copying the values
of the seven infrequently changing attributes every time
one of the three frequently changing attributes is modified
would create a tremendous amount of unnecessary data
duplication in the raw data vault.

2 V I S I T R E S U LTA N T.CO M

https://datavaultalliance.com/data-vault-2-the-details/
https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M

SAMPLE _SLOWCHG_SH

Hk_Sample_h CHAR(32) HUB’s hash key this SAT is associated to

Bk_Sample_h VARCHAR(50) business key of the Hub Hash key above

Attrib_A VARCHAR(10)

Attrib_B VARCHAR(25)

LoadDate DATETIME When did the record get loaded to the DV

RecordSource VARCHAR(1024) Which source system provided the data

HashDiff CHAR(32) Has the record changed since previous

SAMPLE _MEDCHG_SH

Hk_Sample_h CHAR(32) HUB’s hash key this SAT is associated to

Bk_Sample_h VARCHAR(50) business key of the Hub Hash key above

Attrib_C VARCHAR(5)

Attrib_D VARCHAR(12)

LoadDate DATETIME When did the record get loaded to the DV

RecordSource VARCHAR(1024) Which source system provided the data

HashDiff CHAR(32) Has the record changed since previous

SAMPLE _FASTCHG_SH

Hk_Sample_h CHAR(32) HUB’s hash key this SAT is associated to

Bk_Sample_h VARCHAR(50) business key of the Hub Hash key above

Attrib_E VARCHAR(6)

Attrib_F VARCHAR(8)

LoadDate DATETIME When did the record get loaded to the DV

RecordSource VARCHAR(1024) Which source system provided the data

HashDiff CHAR(32) Has the record changed since previous

0 3

Here’s the data definition language (DDL) for demonstration purposes of each satellite. Other
possible data information could be included in satellites depending on the kind of satellite it is.
These satellite fields will suffice to demonstrate the use of PITs.

https://resultant.com/
https://resultant.com/

SA M P L E _ S LOWC H G _ S H

Hk_Sample_h Bk_Sample_h Attrib_A Attrib_B LoadDate RecordSource HashDiff

0x00000….000 GhostValue Ghost Ghost
1/1/1900

00:00:00 AM
Internal 0x36234….235

0x7F587….895 Biz_Value_123 ABC DEF
10/5/2020
2:34:56 PM

SystemA 0x12385….284

0x7F587….895 Biz_Value_123 XYZ3 ABC
3/16/2021

11:32:23 PM
SystemA 0x61092….302

SA M P L E _ M E D C H G _ S H

Hk_Sample_h Bk_Sample_h Attrib_C Attrib_D LoadDate RecordSource HashDiff

0x00000….000 GhostValue Ghost Ghost
1/1/1900

00:00:00 AM
Internal 0x36234….235

0x7F587….895 Biz_Value_123 CAT BIRD
11/14/2020
9:16:45 AM

SystemB 0x82730….591

0x7F587….895 Biz_Value_123 TALL TREE
1/30/2021
3:56:12 PM

SystemB 0x50367….622

0x7F587….895 Biz_Value_123 TALL SHORT
2/1/2021

6:23:45 PM
SystemB 0x51128….990

0x7F587….895 Biz_Value_123 BIRD CAT
4/27/2021
2:18:16 PM

SystemB 0x12385….284

V I S I T R E S U LTA N T.CO M0 4

DATA VA LU E S C E N A R I OS I N T H E SAT E L L I T E S

https://resultant.com/
https://resultant.com/

SA M P L E _ FASTC H G _ S H

Hk_Sample_h Bk_Sample_h Attrib_C Attrib_D LoadDate RecordSource HashDiff

0x00000….000 GhostValue Ghost Ghost
1/1/1900

00:00:00 AM
Internal 0x36234….235

0x7F587….895 Biz_Value_123 ABC DEF
12/26/2020
11:11:36 AM

SystemA 0x12385….284

0x7F587….895 Biz_Value_123 XYZ ABC
1/30/2021
3:56:12 PM

SystemA 0x50367….622

0x7F587….895 Biz_Value_123 XYZ2 ABC
2/1/2021

1:23:45 PM
SystemA 0x51128….990

0x7F587….895 Biz_Value_123 XYZ3 ABC
3/15/2021

11:32:23 PM
SystemA 0x61092….302

0x7F587….895 Biz_Value_123 ABC DEF
4/22/2021
2:18:16 PM

SystemA 0x12385….284

0x7F587….895 Biz_Value_123 CAT DOG
4/22/2021
2:45:56 PM

SystemA 0x39294….912

0x7F587….895 Biz_Value_123 SNAKE BIRD
4/22/2021
2:50:13 PM

SystemA 0x63853….293

0x7F587….895 Biz_Value_123 CAT BIRD
4/23/2021

10:45:13 AM
SystemA 0x82730….591

0x7F587….895 Biz_Value_123 CAT TREE
4/23/2021

10:50:13 AM
SystemA 0x60238….003

0x7F587….895 Biz_Value_123 ABC DEF
4/26/2021
11:15:13 AM

SystemA 0x12385….284

0x7F587….895 Biz_Value_123 BCD DEF
4/27/2021
9:32:13 AM

SystemA 0x63853….293

0x7F587….895 Biz_Value_123 ABC GHJ
4/30/2021
4:45:13 PM

SystemA 0x82730….591

V I S I T R E S U LTA N T.CO M0 5

You can see that the attributes in the three different satellites for the Sample_h hub changed at different frequencies and
different days and times.

https://resultant.com/
https://resultant.com/

SA M P L E _ S LOWC H G _ S H

0x7F587….895 Biz_Value_123 XYZ3 ABC
3/16/2021

11:32:23 PM
SystemA 0x61092….302

SA M P L E _ M E D C H G _ S H

0x7F587….895 Biz_Value_123 TALL SHORT
2/1/2021

6:23:45 PM
SystemB 0x51128….990

SA M P L E _ FASTC H G _ S H

0x7F587….895 Biz_Value_123 CAT TREE
4/23/2021

10:50:13 AM
SystemA 0x60238….003

None of the satellite record’s load dates matched the
requested point-in-time. In this case, we used the closest
record value of each satellite table on the requested date
and time, the maximum load date value that is less than or
equal to the requested point-in-time date.

But finding the satellite record closest to the point-in-time
requested can involve significant compute time. Further
compute time is increased when adding more satellites to
the hub or link, adding additional or different records or
business keys to the satellite, adding more simultaneous
users requesting different points-in-time at the same
moment from the hub or link and satellites, or when adding
additional changes over time to the satellites. These various
point-in-time requests can be a significant drain on the data
vault’s compute resources.

THE PERFORMANCE REPORTING

PROBLEM

Let’s assume a reporting user wants to know what the
Sample_h hub and all its attributes within its three satellites
looked like at a particular date and time. As our example,
let’s select April 26, 2021 at 9am. This date and time are
referred to as the reporting user’s point-in-time and we are
seeking to learn exactly what the data looked like in the
source systems.

For hub key “Biz_Value_123” which is Hash Key
0x7F587….895 the most appropriate matching
satellite record from each satellite table are these
records:

0 6 V I S I T R E S U LTA N T.CO M

https://resultant.com/
https://resultant.com/

SA M P L E _ S LOWC H G _ S H

0x7F587….895 Biz_Value_123 ABC DEF
10/5/2020
2:34:56 PM

SystemA 0x12385….284

SA M P L E _ M E D C H G _ S H

0x00000….000 GhostValue Ghost Ghost
1/1/1900

00:00:00 AM
Internal 0x36234….235

SA M P L E _ FASTC H G _ S H

0x00000….000 GhostValue Ghost Ghost
1/1/1900

00:00:00 AM
Internal 0x36234….235

In another scenario, assume that a reporting user wants to
know what the Sample_h hub and its attributes in its three
satellites looked like on November 10, 2020 at midnight.

For hub key “Biz_Value_123”, which is Hash Key
0x7F587….895, the most appropriate matching
satellite record from each satellite table are these
records:

Because attributes Attrib_C, Attrib_D, Attrib_E, Attrib_F
of the Sample_MedChg_sh and Sample_FastChg_sh
satellites respectively didn’t exist on November 10, 2020
at midnight, we assign ghost values to those attributes.
The ghost record is chosen when no appropriate satellite
record exists for the point-in-time the user is requesting.

07 V I S I T R E S U LTA N T.CO M

USING PIT TABLES TO SOLVE THE

PERFORMANCE PROBLEM

Performance can degrade quickly depending on
how much data exists in the satellites and how many
concurrent reporting users are analyzing data in the
data vault. How can we improve this performance?

By architecting and implementing PIT tables. Establishing
these pre-set, points-in-time in advance anticipates and
avoids the need for users to find each individual and the
most appropriate matching satellite records per business
key with queries.

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M

WHAT DOES A PIT LOOK LIKE?

According to the Data Vault 2.0 standard, a PIT table includes these main DDL components below. This white paper covers
some optimizations (though not all that exist) that can be applied to PITs while not breaking the Data Vault 2.0 standard,
making the PIT storage needs more efficient. An important goal of a PIT design is to keep the PIT record as small as
feasibly possible.

0 8

SAMPLE _P

SnapshotDate DATETIME Point-In-Time Date and Time

Bk_Sample_h VARCHAR(50) PK of the PIT – The Bus keys of HUB/LINK

Hk_Sample_h CHAR(32) HUB’s (or LINK’s) hash key for this PIT

Hk_Sample_SlowChg_sh CHAR(32)

LoadDate_Sample_SlowChg_sh DATETIME

Hk_Sample_MedChg_sh CHAR(32)

LoadDate_Sample_MedChg_sh DATETIME

Hk_Sample_FastChg_sh CHAR(32)

LoadDate_Sample_FastChg_sh DATETIME

The grain of the PIT can determine the frequency the
point-in-time (SnapshotDate) date field will represent,
such as once a year, once a month, once a day or once a
minute, etc. The frequency can be evenly spaced or can
be complex, jumping around from daily to weekly across
a month span of time for one stretch, then go back to daily
(that is not typical, and not recommended, but can be
accomplished).

Once the frequency is determined, the PIT is filled with the
necessary point-in-time/snapshot frequency dates from a
beginning to ending date period and can then utilize all the
separate point-in-time dates that exist inside the beginning
to ending date period. By creating point-in-time datetime
instances of the desired frequency, the most appropriate
records from all the hub’s satellites are located that best
match each point-in-time date. Once the best matching
satellite records are located from each satellite, the hash
keys and load dates of each of the satellite’s records are
loaded into their respective columns in the PIT record for
this point-in-time date.

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M

SA M P L E _ P

Bk_Sample_h Hk_Sample_h SnapshotDate
HK_Sample_
SlowChg_sh

LoadDate_Sample_
SlowChg_sh

Biz_Value_123 0x7F587….895 1/1/2021 0:00 0x7F587….895
10/5/2020
2:34:56 PM

Biz_Value_123 0x7F587….895 2/1/2021 0:00 0x7F587….895
10/5/2020
2:34:56 PM

Biz_Value_123 0x7F587….895 3/1/2021 0:00 0x7F587….895
10/5/2020
2:34:56 PM

Biz_Value_123 0x7F587….895 4/1/2021 0:00 0x7F587….895
3/16/2021

11:32:23 PM

Bk_Sample_h
HK_Sample_
MedChg_sh

LoadDate_Sample_
MedChg_sh

HK_Sample_FastChg_sh
LoadDate_Sample_

FastChg_sh

Biz_Value_123 0x7F587….895
11/14/2020
9:16:45 AM

0x7F587….895
12/26/2020
11:11:36 AM

Biz_Value_123 0x7F587….895
1/30/2021
3:56:12 PM

0x7F587….895
1/30/2021
3:56:12 PM

Biz_Value_123 0x7F587….895
2/1/2021 6:23:45

PM
0x7F587….895

2/1/2021
1:23:45 PM

Biz_Value_123 0x7F587….895
2/1/2021 6:23:45

PM
0x7F587….895

3/15/2021
11:32:23 PM

0 9

Assume the frequency grain of our Sample_p PIT table is
monthly. We’ll start the PIT at January 1, 2021 and end it on
April 1, 2021. The PIT table would look like this:

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M1 0

Many times the load date of the satellite record that best
matches the point-in-time frequency date can be quite
different on a time line because there were no changes to
the satellite record over an extended period of time.

It’s important to note: the exact load date from the
satellite record is necessary to capture in the PIT
record for each matching satellite record, because
load date is one of the key fields of the satellite table.
When reporting users find the PIT record they want, it’s
then a simple INNER JOIN back to the appropriate satellite
table to pull the exact record of satellite attributes as they
looked on the point-in-time date with the satellite’s hash key
and load date.

The PIT table is an extraordinarily valuable time-saver as it
pulls together all the right satellite records for a hub or link
for a particular point-in-time in advance, reducing both
compute time and wait time.

The example above didn’t need to pull in any ghost records
from the satellites because there was always a good
matching record. Had there been a point-in-time date
where no satellite record existed, the ghost record for that
satellite would have automatically been chosen and placed
in the PIT.

SAMPLE CODE TO BUILD A PIT TABLE

The following code is the general pattern for loading data into a PIT table. Alternatively, PIT views can be used for
a more virtualized instantiation of a PIT table. The data isn’t actually moved into the PIT table but rather the PIT just points to
the correct data in the raw data vault or business data vault hub/link and satellite records. The PIT view can be dynamic or
materialized; though you may not be able to determine your range of point-in-time dates in advance, you could implement
the PIT as more of a dynamic virtualized View—the recommended first option according to the Data Vault 2.0 standard.
However, if PIT views create performance issues, it may be necessary to materialize and not virtualize your PIT.

INSERT INTO

SchemaName.Sample_p -- The PIT table for the Sample_h HUB

(SnapshotDate, -- The Point-In-Time for a particular PIT rec

bk_Sample_h,

hk_Sample_h,

hk_Sample_SlowChg_sh,

LoadDate_Sample_SlowChg_sh,

hk_Sample_MedChg_sh,

LoadDate_Sample_MedChg_sh,

hk_Sample_FastChg_sh,

LoadDate_Sample_FastChg_sh)

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M1 1

SELECT

Snapshot_Dates.as_of_date -- Table of Point-In-Time dates

,Sample_h.Sample_bk Sample_h_BizKey -- The HUB Business Key

,Sample_h.Sample_hk Sample_h_HashKey -- The HUB Hash Key

,COALESCE(MAX(Sample_SlowChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_SlowChg_sh

,COALESCE(MAX(Sample_SlowChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_SlowChg_sh

,COALESCE(MAX(Sample_MedChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_MedChg_sh

,COALESCE(MAX(Sample_MedChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_MedChg_sh

,COALESCE(MAX(Sample_FastChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_FastChg_sh

,COALESCE(MAX(Sample_FastChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_FastChg_sh

FROM

Sample_h -- The HUB (or LINK) associated to all the SATs for the HUB below

INNER JOIN Snapshot_Dates -- This is a table or inline view of all the Point-In-Time dates

 -- we want to create PIT records for. What dates are to be used for Point-In-Time

 -- dates are purely up to the business requirements

 ON (1=1) -- Essentially a CROSS JOIN of the

 -- Point-In-Time Dates table to the Hub (Sample_h)

LEFT OUTER JOIN Sample_SlowChg_sh Sample_SlowChg_sh

 ON (Sample_SlowChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_SlowChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

LEFT OUTER JOIN Sample_MedChg_sh Sample_MedChg_sh

 ON (Sample_MedChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_MedChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

LEFT OUTER JOIN Sample_FastChg_sh Sample_FastChg_sh

 ON (Sample_FastChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_FastChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

https://resultant.com/
https://resultant.com/

GROUP BY

Snapshot_Dates.as_of_date

,Sample_h.Sample_hk

,Sample_h.Sample_bk -- Although it can be questioned why this is needed in the GroupBy

 -- if the HashKey is guaranteed to be unique by Business Key

--ORDER BY 1, 2;

V I S I T R E S U LTA N T.CO M1 2

STANDARD DV 2.0 SQL TO ACCESS DATA IN THE PIT TABLE

The following code is the general pattern for
selecting data from a PIT table. You can also add a
WHERE clause for row filtering, a GROUP BY clause for
aggregating satellite attributes and others if desired for
further reporting enhancement.

Note how we are now able to use just INNER JOINs (in
particular “Equi Joins”) back to the satellites, increasing the
efficiency of the query to select data from the PIT.

SELECT

Sample_p.SnapshotDate, -- PIT Point-In-Time value

Sample_p.bk_Sample_h, -- Hub Business key for Sample_h HUB

Sample_p.hk_Sample_h, -- Hub Hash key for Sample_h HUB

Sample_SlowChg_sh.*, -- SlowChg Sat flds associated with Sample_h HUB

Sample_MedChg_sh.*, -- MedChg Sat flds associated with Sample_h HUB

Sample_FastChg_sh.* -- FastChg Sat flds associated with Sample_h HUB

FROM SchemaName.Sample_p Sample_p -- The PIT table

INNER JOIN Sample_SlowChg_sh Sample_SlowChg_sh -- Sat #1 for Sample_h HUB

 ON Sample_SlowChg_sh.hk_Sample_h = Sample_p.hk_Sample_SlowChg_sh

 AND Sample_SlowChg_sh.LoadDate = Sample_p.LoadDate_Sample_SlowChg_sh

INNER JOIN Sample_MedChg_sh Sample_MedChg_sh -- Sat #2 for Sample_h HUB

 ON Sample_MedChg_sh.hk_Sample_h = Sample_p.hk_Sample_MedChg_sh

 AND Sample_MedChg_sh.LoadDate = Sample_p.LoadDate_Sample_MedChg_sh

INNER JOIN Sample_FastChg_sh Sample_FastChg_sh -- Sat #3 for Sample_h HUB

 ON Sample_FastChg_sh.hk_Sample_h = Sample_p.hk_Sample_FastChg_sh

 AND Sample_FastChg_sh.LoadDate = Sample_p.LoadDate_Sample_FastChg_sh

-- HOW TO ACCESS HUB (OR LINK) DATA AND ALL ITS ASSOCIATED SAT DATA IN THE PIT ABOVE

https://resultant.com/
https://resultant.com/

OPTIMIZING THE DATA STORAGE FOOTPRINT OF THE PIT WITHOUT SACRIFICING

PERFORMANCE

PIT tables can require significant amounts of storage to
represent all the points-in-time requested by users for all
the business keys in the hub or link. There are techniques
beyond the scope of this document that can be employed
against a PIT to significantly reduce the data size footprint
of a PIT, but you lose some point-in-time granularity
implementing them.

However, the following technique significantly reduces the
data size required by a PIT by making some modifications to
the PIT’s DDL, slight code changes while creating the data
in the PIT, and a small modification when querying the PIT.

First, recall that at the beginning of this document the
DV 2.0 standard DDL of a PIT table is:

V I S I T R E S U LTA N T.CO M1 3

SAMPLE _P (PIT DDL ACCORDING TO DV 2.0 STDS)

SnapshotDate DATETIME Point-In-Time Date and Time

bk_Sample_h VARCHAR(50) PK of the PIT – The Bus key of the Hub/Link

hk_Sample_h CHAR(32) HUB’s hash key this PIT rec is for

hk_Sample_SlowChg_sh CHAR(32)

LoadDate_Sample_SlowChg_sh DATETIME

hk_Sample_MedChg_sh CHAR(32)

LoadDate_Sample_MedChg_sh DATETIME

hk_Sample_FastChg_sh CHAR(32)

LoadDate_Sample_FastChg_sh DATETIME

Note that all the hash key fields (starting with hk_) require
a significant amount of storage size per PIT record.
CHAR(32) is required to store an MD5 hash. It gets even
larger for more enhanced hash value types (e.g. SHA1,
SHA256, etc.).

It would be very helpful to reduce or eliminate as many of
those as possible.

If you refer to the sample data earlier in this article, you’ll
notice that unless the satellite hash key value in the PIT was
set to the ghost record value, its hash value was always
equal to the hub (or link) hash key field value in the PIT. In
the DDL above, this means the hk_Sample_SlowChg_sh,
hk_Sample_MedChg_sh, and hk_Sample_FastChg_sh
hash values are identical to the hk_Sample_h hash value
for the associated hub hash key value (or link if this was a
PIT for a link’s satellites).

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M1 4

We can make use of that fact and eliminate the HashKey hk satellite fields from the PIT. Taking the hub business key out of
consideration of PII size savings (because it will vary by PIT), then removing the hk SAT fields will reduce the size of the PIT by
34% to 56% or more in space savings for MD5 hashes depending on the number of satellites in the PIT, 36% to 60% or more
in space savings for SHA1 hashes, and 40% to 67% or more in space savings for SHA256 hashes. Smaller PIT record sizes
will likely equate to faster performance, while not losing any PIT functionality.

The new PIT structure would look like this:

SAMPLE _P (PIT DDL TWEAKED)

SnapshotDate DATETIME Point-In-Time Date and Time

bk_Sample_h VARCHAR(50) PK of the PIT – The Bus key of the Hub/Link

hk_Sample_h CHAR(32) HUB’s hash key this PIT rec is for

LoadDate_Sample_SlowChg_sh DATETIME

LoadDate_Sample_MedChg_sh DATETIME

LoadDate_Sample_FastChg_sh DATETIME

To build the PIT for this new DDL, simply leave out the hk satellite fields
when INSERTING into the PIT. Everything else is the same with the previous
code. Here is that adjusted code:

INSERT INTO

SchemaName.Sample_p -- The PIT table for the Sample_h HUB

(SnapshotDate,

bk_Sample_h,

hk_Sample_h,

hk_Sample_SlowChg_sh, < ---- Remove this SAT hash key here and below

LoadDate_Sample_SlowChg_sh,

hk_Sample_MedChg_sh, < ---- Remove this SAT hash key here and below

 LoadDate_Sample_MedChg_sh,

 hk_Sample_FastChg_sh, < ---- Remove this SAT hash key here and below

 LoadDate_Sample_FastChg_sh)

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M1 5

SELECT

Snapshot_Dates.as_of_date -- Table of Point-In-Time dates

,Sample_h.Sample_bk Sample_h_BizKey -- The HUB Business Key

,Sample_h.Sample_hk Sample_h_HashKey -- The HUB Hash Key

,COALESCE(MAX(Sample_SlowChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_SlowChg_sh

,COALESCE(MAX(Sample_SlowChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_SlowChg_sh

,COALESCE(MAX(Sample_MedChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_MedChg_sh

,COALESCE(MAX(Sample_MedChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_MedChg_sh

,COALESCE(MAX(Sample_FastChg_sh.hk_Sample_h),

 CONVERT(binary(16), 0x00, 2)) hk_Sample_FastChg_sh

,COALESCE(MAX(Sample_FastChg_sh.LoadDate),

 CONVERT(datetime, ‘1900-01-01 00:00:00’)) LoadDate_Sample_FastChg_sh

FROM

Sample_h -- The HUB associated to all the SATs for the HUB below

INNER JOIN Snapshot_Dates -- This is a table or inline view of all the Point-In-Time dates

 -- we want to create PIT records for. What dates are to be used for

 -- Point-In-Time dates are purely up to the business requirements

ON (1=1) -- Essentially a CROSS JOIN of the Point-In-Time Dates table to

 the Hub (Sample_h)

 LEFT OUTER JOIN Sample_SlowChg_sh Sample_SlowChg_sh

 ON (Sample_SlowChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_SlowChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

 LEFT OUTER JOIN Sample_MedChg_sh Sample_MedChg_sh

 ON (Sample_MedChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_MedChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

 LEFT OUTER JOIN Sample_FastChg_sh Sample_FastChg_sh

 ON (Sample_FastChg_sh.hk_Sample_h = Sample_h.Sample_hk

 AND Sample_FastChg_sh.LoadDate <= Snapshot_Dates.as_of_date)

GROUP BY

Snapshot_Dates.as_of_date

,Sample_h.Sample_hk

,Sample_h.Sample_bk -- Although it can be questioned why this is needed in the GroupBy if the HashKey is

 -- guaranteed to be unique by Business Key

--ORDER BY 1, 2;

https://resultant.com/
https://resultant.com/

V I S I T R E S U LTA N T.CO M1 6

Remove the highlighted yellow areas, and you’ll have a
storage optimized PIT without loss of PIT functionality.

But to SELECT data from the storage optimized PIT,
the selection SQL code modifies slightly as shown
here:

-- How to access HUB (or LINK) and its SAT data in the PIT above

-- But this tweak to accessing the PIT data allows us to leave out the

-- HUB hash key fields for all the SAT objects in the PIT saving a significant

-- amount of storage since PITs can run very heavy on data size footprint.

-- Can do this because the HUB hash key (or LINK) field in the PIT is identical to

-- the HUB hash key for all of the SATs in the PIT.

SELECT

 Sample_p.SnapshotDate, -- PIT Point-In-Time value

 Sample_p.bk_Sample_h, -- Hub Business key for Sample_h HUB

 Sample_p.hk_Sample_h, -- Hub Hash key for Sample_h HUB

 Sample_SlowChg_sh.*, -- SlowChg Sat flds associated with Sample_h HUB

 Sample_MedChg_sh.*, -- MedChg Sat flds associated with Sample_h HUB

 Sample_FastChg_sh.* -- FastChg Sat flds associated with Sample_h HUB

FROM

SchemaName.Sample_p Sample_p -- The PIT table

INNER JOIN Sample_SlowChg_sh Sample_SlowChg_sh -- Sat #1 for Sample_h HUB

 ON Sample_SlowChg_sh.hk_Sample_h =

 CASE WHEN Sample_p.LoadDate_Sample_SlowChg_sh = ‘1900-01-01’ THEN

 CONVERT(binary(16), 0x00,2) -- Find GHOST record

 ELSE Sample_p.hk_Sample_h -- Find actual SAT record

 END

AND Sample_SlowChg_sh.LoadDate = Sample_p.LoadDate_Sample_SlowChg_sh

INNER JOIN Sample_MedChg_sh Sample_MedChg_sh -- Sat #2 for Sample_h HUB

 ON Sample_MedChg_sh.hk_Sample_h =

 CASE WHEN Sample_p.LoadDate_Sample_MedChg_sh = ‘1900-01-01’ THEN

 CONVERT(binary(16), 0x00, 2) -- Find GHOST record

 ELSE Sample_p.hk_Sample_h -- Find actual SAT record

 END

AND Sample_MedChg_sh.LoadDate = Sample_p.LoadDate_Sample_MedChg_sh

INNER JOIN Sample_FastChg_sh Sample_FastChg_sh -- Sat #3 for Sample_h HUB

 ON Sample_FastChg_sh.hk_Sample_h =

 CASE WHEN Sample_p.LoadDate_Sample_FastChg_sh = ‘1900-01-01’ THEN

 CONVERT(binary(16), 0x00, 2) -- Find GHOST record

 ELSE Sample_p.hk_Sample_h -- Find actual SAT record

 END

AND Sample_FastChg_sh.LoadDate = Sample_p.LoadDate_Sample_FastChg_sh

https://resultant.com/
https://resultant.com/

CONDITIONS WHEN SAT LOAD DATE

MAY NOT BE THE BEST POINT-IN-TIME

FIELD CHOICE

According to the DV 2.0 standard, PIT tables are based off
a hub or link hash key and a load date from the satellite that
is stored in the PIT for finding the proper satellite later when
accessing the PIT records.

Occasionally, there are data circumstances within the
source data that make using the satellite load date a difficult
way to manage point-in-time requests from the reporting
users.

One such case is late-arriving data from the source. Some
source systems can send data out of sequence, such as
when a transaction takes longer to execute even though
it started prior to another transaction which completes
sooner than the original transaction. Hence, source records
can come into the data vault in a different order than they
actually occurred.

In this instance, the accurate history would be altered
from how the data changes actually occurred in the
source system and there would not be a correct load date
representation in the satellite.

For these or similar cases, it would be better to use a
reliable source system provided date and time to represent
the load date to manage the PIT table. Using a business
date and time that represents the true order of how the
source data processed at the source will allow the satellites
to be self-healing, allowing the late arriving data to find its
rightful order in the PIT. However, changing this load date
behavior modification is not allowed in the raw data vault
satellites per the DV 2.0 standard, so you will likely need to
switch these types of load dates (wall clock date and time
vs. business date and time field) in the business data vault
satellites. The DV 2.0 standard refers to this business date
from the source as the “Applied Date”.

Based on the knowledge of the source data, it may be
necessary to make adjustments to the way PITs operate
to best capture the proper data order, thus creating an
accurate point-in-time experience from the PITs for the
reporting user.

The data fields have been selected the exact same way
as before using the DV 2.0 standard. And as highlighted
in GREEN, the very important INNER JOIN (Equi Join)
technique is performed on the satellites and the same
satellite load date comparison is also highlighted in GREEN.

Leveraging the fact that the satellite hash key value in the
PIT is always the same as the hash key field in the satellite
which is the same as the hub or link hash key field, you are
able to remove the PIT satellite hash keys because they are
all redundant with the hub or link hash key in the same PIT
record.

This example uses the satellite load date fields that still
remain in the PIT and checks for the ghost value load
date (January 1, 1900 in PURPLE). If that ghost date is
found, return the ghost hash key (in CYAN) to look up the
matching satellite record. If no ghost date is detected for
the satellite in the PIT, then use the PIT’s hub hash key (in
YELLOW) to look up the matching SAT record. The PIT’s hub
hash key is identical to the SAT hash key in the PIT in the
standard DV 2.0 standard.

This is a small enhancement tweak to the PIT selection SQL
which should perform about as efficiently as the DV 2.0
standard code, but you cut down 34%-60% or more of the
PIT storage. Less storage is used, and in many cases, this
can mean better performance response time because there
is less data to scan through.

V I S I T R E S U LTA N T.CO M1 7

https://resultant.com/
https://resultant.com/

SUMMARY OF THE VALUE OF PITS

PIT tables help tremendously with reducing coding
complexity, allowing the reporting user to find the
correct satellite record for a particular point-in-time most
efficiently. Most importantly, PITs will greatly reduce the
amount of compute time needed to find the correct set of
satellite records for a hub or link for a particular point-in-
time, saving valuable resources and possibly budget.

Remember that a particular PIT table is associated with
only one hub or one link object along with one to all of
the hub or link’s associated satellite objects. A different
hub or link object would need a different PIT table.
Additionally, a particular hub or link object may have
more than one PIT table, because it may need to support
different point-in-time/snapshot frequencies, or different
subset combinations of the satellites that belong to a
single hub or link.

About Resultant

Our team believes solutions are more valuable,
transformative, and meaningful when reached
together. Through solutions rooted in data
analytics, technology, and digital transformation,
Resultant serves as a true partner by solving
problems with our clients rather than for them.

Author:

JIM MIHALICK
Sr. Principal BI Consultant

jmihalick@resultant.com

V I S I T R E S U LTA N T.CO M1 8

mailto:jmihalick%40resultant.com?subject=
https://resultant.com/
https://resultant.com/

